A Discussion on the Classifier Projection Space for Classifier Combining
نویسندگان
چکیده
In classifier combining, one tries to fuse the information that is given by a set of base classifiers. In such a process, one of the difficulties is how to deal with the variability between classifiers. Although various measures and many combining rules have been suggested in the past, the problem of constructing optimal combiners is still heavily studied. In this paper, we discuss and illustrate the possibilities of classifier embedding in order to analyse the variability of base classifiers, as well as their combining rules. Thereby, a space is constructed in which classifiers can be represented as points. Such a space of a low dimensionality is a Classifier Projection Space (CPS). In the first instance, it is used to design a visual tool that gives more insight into the differences of various combining techniques. This is illustrated by some examples. In the end, we discuss how the CPS may also be used as a basis for constructing new combining rules.
منابع مشابه
Combining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملIntelligent and Robust Genetic Algorithm Based Classifier
The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experime...
متن کاملCombined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier
Combining the computational fluid dynamics (CFD) and the design of experiments (DOE) methods, as a mixed approach in modeling was proposed so that to simultaneously benefit from the advantages of both modeling methods. The presented method was validated using a coal hydraulic classifier in an industrial scale. Effects of operating parameters including feed flow rate, solid content and baffle le...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کامل